成功案例

SUCCESSFUL CASE

人脸识别技术的前世今生
来源: | 作者:jungle | 发布时间: 2021-02-22 | 7292 次浏览 | 分享到:

  武汉安装人脸识别门禁一卡通系统|无人值守车牌识别停车场|景区电子票务系统扫码检票闸机|摆闸通道闸机|考勤机|消费机|水控机|手机二维码门禁考勤系统。   
      在我们生存的这个地球上,居住着近65亿人。每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等少数几个区域组合而成,它们之间的大体位置关系也是固定的,并且每张脸的大小不过七八寸见方。然而,它们居然就形成了那么复杂的模式,即使是面容极其相似的双胞胎,其家人通常也能够非常容易地根据他们面孔上的细微差异将他们区分开来。这使得我们不得不承认这个世界上找不出两张完全相同的人脸!那么,区分如此众多的不同人脸的“特征”到底是什么?能否设计出具有与人类一样的人脸识别能力的自动机器?这种自动机器的人脸识别能力是否能够超越人类自身?对这些问题的分析和解答无疑具有重要的理论和应用价值,这正是众多从事自动人脸识别研究的研究人员所面临的挑战。

然而,对这些问题的回答并不像看起来那么容易。即使在大量来自模式识别、计算机视觉、神经计算、生理学等领域的研究人员对自动人脸识别艰苦工作40余年之后,这些最基本的科学问题仍然困惑着研究人员。而退一步讲,即使对我们自己,尽管我们每天都在根据面孔区分着亲人、同学、朋友、同事等,大多数人却很难准确地描述出自己到底是如何区分他们的,甚至描述不出自己熟悉的人有什么具体的特征。即使专门从事相关的生理学、心理学、神经科学研究的一些专家,也很难描述清楚人类人脸识别的生理学过程。这意味着基于仿生学的人脸识别研究路线在实践上是难以操作的。当然,飞机的翅膀并不需要像鸟儿的翅膀一样煽动,自动人脸识别的计算模型也未必需要模拟“人脑”。我们也许可以通过另外的途径,例如建立人脸识别的计算模型,这种计算模型可能是基于仿生神经网络的,也可能是纯粹基于统计的,或者是这二者之外的第三只眼睛,并通过构建实用的自动人脸识别系统来验证这些计算模型,从而找出对上述基本科学问题的解答。

本文首先给出了人脸识别的一个一般计算模型,然后简单回顾自动人脸识别的研究历史,接下来阐述人脸识别的研究现状并介绍几种主流的技术方法,简单介绍计算所人脸识别研究组的研究进展,最后对上述哲学层面的问题作了一些简单的探讨。

2         计算模型初探
通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。光学人脸图像(以下简称人脸图像)是外界光源(包括太阳、室内人造光源和其他物体表面反射)的光线照射在人脸上,经人脸表面反射后传播到摄像机传感器的光线强度的度量。不难理解,这一成像过程实际上涉及到三大类关键要素:

服务热线:027-87785008