成功案例

SUCCESSFUL CASE

人脸识别技术频频刷新 未来或将“触脸可及”
来源: | 作者:admin | 发布时间: 2017-07-07 | 5231 次浏览 | 分享到:

    对运算环境要求更高的是1:N级和N:N级的人脸识别。也就是单一特征对比多种特征和多种特征对比多种特征。而这两种等级的人脸识别在应用上也常常无法提供较好的环境,比如1:N级人脸识别可以应用于失踪人口搜索中,在特殊情况下拍的照片存在角度、光线的复杂性,加大了特征提取、对比的难度。

    LBP,人脸识别的魔法根源

    或许我们可以更深一步探究人脸识别的算法,比如LocalBinaryPattern(局部二元模式)。这种算法可以将某一像素周边的灰度值和该像素作比较,从而去除光线的影响提取特征。

    过安检能“刷脸”不算什么,人脸识别的价值还远未被发掘

    除了LBP外,常用的特征提取算法还有很多,像是Gabor滤波器。当然,提取特征只是第一步,接下来还要根据特征进行分类,这时就要应用贝叶斯、决策树等等分类算法。

    最近大火的深度学习也正逐渐被应用于人脸识别中,深度学习将特征提取和分类两个步骤融合在一起。利用神经网络黑盒子的特性计算出最适合的特征提取模式,从而可以直接跳过“特征提取影响识别结果”这一怪圈,让算法的应用范围更大。

    当然,由于深度学习需要应用大量的数据样本和较长时间的训练时间,对于整体运算环境要求也很高,相比物美价廉的LBP,应用范围还不大。

    算法基础?实用性更重要!

    虽然有人认为人脸识别只是个很基础的算法,但我们认为在应用上范畴上,人脸识别还是一座未经发掘的宝矿。

    单纯从身份验证、识别角度来看,就有远程信贷、证券事务办理、实名制系统验证、来访记录、安检审核等等范畴的应用。在提高鲁棒性的前提下,还利用天网进行罪犯/失踪人口追踪排查,总之科幻片里通过大街小巷摄像头找人的情节完全可以进入现实。

    过安检能“刷脸”不算什么,人脸识别的价值还远未被发掘

服务热线:027-87785008